skip to main content


Search for: All records

Creators/Authors contains: "van Wijk, Jolante"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Processes controlling the formation of continental whole-lithosphere shear zones are debated, but their existence requires that the lithosphere is mechanically coupled from base to top. We document the formation of a dextral, whole-lithosphere shear zone in the Death Valley region (DVR), southwest United States. Dextral deflections of depth gradients in the lithosphere-asthenosphere boundary and Moho are stacked vertically, defining a 20–50-km-wide, lower lithospheric shear zone with ~60 km of shear. These deflections underlie an upper-crustal fault zone that accrued ~60 km of dextral slip since ca. 8–7 Ma, when we infer that whole-lithosphere shear began. This dextral offset is less than net dextral offset on the upper-crustal fault zone (~90 km, ca. 13–0 Ma) and total upper-crustal extension (~250 km, ca. 16–0 Ma). We show that, before ca. 8–7 Ma, weak middle crust decoupled upper-crustal deformation from deformation in the lower crust and mantle lithosphere. Between 16 and 7 Ma, detachment slip thinned, uplifted, cooled, and thus strengthened the middle crust, which is exposed in metamorphic core complexes collocated with the whole-lithosphere shear zone. Midcrustal strengthening coupled the layered lithosphere vertically and therefore enabled whole-lithosphere dextral shear. Where thick crust exists (as in pre–16 Ma DVR), midcrustal strengthening is probably a necessary condition for whole-lithosphere shear. 
    more » « less
  2. null (Ed.)
  3. Abstract

    This paper investigates the causes of the Late Cretaceous transition from “Sevier” to “Laramide” orogenesis and the spatial and temporal evolution of effective elastic thickness (EET) of the North American lithosphere. We use a Monte Carlo flexural model applied to 34 stratigraphic profiles in the Laramide province and five profiles from the Western Canadian Basin to estimate model parameters which produce flexural profiles that match observed sedimentary thicknesses. Sediment thicknesses come from basins from New Mexico to Canada of Cenomanian–Eocene age that are related to both Sevier and Laramide crustal loads. Flexural models reveal an east‐to‐west spatial decrease in EET in all time intervals analyzed. This spatial decrease in EET may have been associated with either bending stresses associated with the Sevier thrust belt, or increased proximity to attenuated continental crust at the paleocontinental margin. In the Laramide province (i.e., south of ~48°N) there was a coeval, regional decrease in EET between the Cenomanian–Santonian (~98–84 Ma) and the Campanian–Maastrichtian (~77–66 Ma), followed by a minor decrease between the Maastrichtian and Paleogene. However, there was no decrease in EET in the Western Canada Basin (north of ~48°N), which is consistent with a lack of Laramide‐style deformation or flat subduction. We conclude that the regional lithospheric weakening in the late Santonian–Campanian is best explained by hydration of the North American lithosphere thinned by bulldozing by a shallowly subducting Farallon plate. The weakening of the lithosphere facilitated Laramide contractional deformation by focusing end‐loading stresses associated with flat subduction. Laramide deformation in turn may have further reduced EET by weakening the upper crust. Finally, estimates of Campanian–Maastrichtian and Paleogene EET are comparable to current estimates indicating that the modern distribution of lithospheric strength was achieved by the Campanian in response to flat subduction.

     
    more » « less